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When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar
marine structure, its impact on the structure can be very violent. This paper describes
the theoretical studies that, together with field and laboratory investigations, have
been carried out in order to gain a better understanding of the processes involved.
The wave’s approach towards a structure is modelled with classical irrotational
flow to obtain the different types of impact profiles that may or may not lead to air
entrapment. The subsequent impact is modelled with a novel compressible-flow model
for a homogeneous mixture of incompressible liquid and ideal gas. This enables a
numerical description of both trapped air pockets and the propagation of pressure
shock waves through the aerated water. An exact Riemann solver is developed to
permit a finite-volume solution to the flow model with smallest possible local error.

The high pressures measured during wave impacts on a breakwater are reproduced
and it is shown that trapped air can be compressed to a pressure of several
atmospheres. Pressure shock waves, reflected off nearby surfaces such as the seabed,
can lead to pressures comparable with those of the impact. Typical examples of
pressure-time histories, force and impulse are presented and discussed in terms of their
practical implications. The numerical model proposed is relevant for a variety of flows
where air effects are important. Further applications, including extended studies of
wave impacts, are discussed.

Key words: flow–structure interactions, surface gravity waves, wave–structure
interactions

1. Introduction
Numerous coastal and marine structures are damaged by wave action each year.

Sometimes, even apparently well-designed breakwaters, sea defenses and vessels fail
catastrophically while many other structures are left in need of extensive repair and
maintenance. The damage is often caused by the violent impacts of waves that are
either breaking or very close to breaking. In extreme cases, such waves can displace
large caissons by several metres (Tanimoto & Takahashi 1994). Design formulae for
estimating the magnitude of the impulsive pressures generated by breaking waves are
presented by Goda (2000) and Oumeraci et al. (2001). These relationships are largely
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derived from the results of laboratory tests rather than from an in-depth analysis of
the fundamental mechanics. A review of the more theoretical aspects of wave impacts
on walls is provided by Peregrine (2003).

Because relatively little is known about the mechanics of breaker–structure
interaction, many coastal structures are designed, at least in part, on the basis of
small-scale hydraulic model tests. This introduces scale effects that are difficult to
quantify. The problem is particularly acute when the wave impact involves trapped
and entrained air due to the fact that air is much more compressible than water.

Bagnold (1939) was one of the first to conduct a detailed laboratory investigation
into breaking-wave impacts on a vertical wall. He concluded that the highest pressures
occurred when the wave trapped a small pocket of air against the wall. Hattori,
Arami & Yui (1994) obtained similar results in another series of small-scale tests and
noted that impulsive pressures generated in the vicinity of the still water level (SWL)
travelled down through the water at the speed of sound. At full scale, Blackmore &
Hewson (1984) found that none of the existing equations for estimating impact
pressures agreed with their field observations. The expression they proposed broke
new ground by including a coefficient related to the percentage of air entrained in
the incident waves.

The vast majority of laboratory investigations are carried out using fresh water,
while the waves of interest are generally in seawater. Scott (1975, 1976) was the first
to demonstrate that the size of air bubbles in water is inversely related to its salinity,
while Slauenwhite & Johnson (1999) found that the exudates of marine organisms
have a similar effect. Because small bubbles rise through the water more slowly than
large bubbles, entrained air can persist in seawater for much longer than in fresh
water. Even at small scale, the resultant difference in aeration level between seawater
breakers and freshwater breakers of the same size results in a tendency for the former
to generate impacts of longer duration and lower peak pressure in comparison with
the latter (Bullock et al. 2001).

The impact pressures measured at small scales are usually well below one
atmosphere so that trapped and entrained air suffers relatively little compression.
Conversely, at large and full scales, impact pressures of many atmospheres have been
recorded (Bullock et al. 2004) and this can cause major reductions in air volumes.
The strong dependence of the speed of sound in aerated water to the volumetric
air fraction (Gibson 1970) adds another element of complexity. For example, only
some 2 % by volume of air is necessary to bring the speed of sound down from the
1450 m s−1 in pure water to 85 m s−1 at atmospheric pressure. With 5 % volumetric
aeration, the sound speed is 54 m s−1. The reduction in air volume fraction associated
with large impact pressures therefore results in a local increase in sound speed. This
in turn changes the way that impact pressures propagate away from the impact zone.
A nonlinear feedback mechanism is thereby established between the magnitude of
pressures and their speed of propagation.

Numerical models of wave impacts and slamming have been described by a number
of authors. Nielsen & Mayer (2004) applied a single-phase, incompressible Navier–
Stokes solver to green water slamming on ships and treated the free surface by means
of the VOF (volume of fluid) technique (Hirt & Nichols 1981). Greco, Colicchio &
Faltinsen (2007) coupled a boundary element method and a Navier–Stokes solver to
model green-water slamming on a deck. Both the air phase and the water phase were
considered incompressible. The effect of trapped air in plunging wave impacts has
been modelled by Zhang, Yue & Tanizawa (1996) using an incompressible potential-
flow solver for the water body and prescribing the pressure of trapped air through
the ideal gas law for adiabatic compression. Faltinsen, Landrini & Greco (2004) used
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a similar adiabatic approach to describe the pressure in trapped air pockets beneath
a floating structure. One exception from the usual assumption of incompressible
flow within the water is the smoothed particle hydrodynamics (SPH) method, where
artificial compressibility is introduced to allow the flow to be modelled by a number of
discrete fluid particles with an appropriate interaction description. Gómez-Gesteira &
Dalrymple (2004) describe how this method can be used to compute forces on a
structure with vertical walls due to a dam-break flow. A promising approach for
combining the two-phase flow and the VOF technique is presented in the recent study
of Wemmenhove (2008), where the air phase is taken to be compressible, allowing for
the modelling of trapped air pockets.

The work described in the current paper was carried out as part of an interactive
field, laboratory and numerical study into Breaking Wave Impacts on steep-fronted
COastal STructures (BWIMCOST). The field measurements were taken on Admiralty
Breakwater, Alderney, where a masonry ‘wall’ steps back irregularly at a slope of
27 deg to the vertical on top of a rubble mound; see Bullock et al. (2003). Most of the
laboratory measurements were taken in the 350 m long, 5 m wide Grosser Wellenkanal
(GWK or Large Wave Channel) at the Forschungzentrum Küste (FZK or Coastal
Research Centre) in Hannover, Germany, where the mound profile of the Admiralty
Breakwater was reproduced at 1:4 scale with two smooth wall arrangements on top.
One was a close approximation to the Admiralty Breakwater, while the other was
vertical. Further details and the results from the regular wave tests have been reported
by Bullock et al. (2007) in the first paper of this series. The current paper focuses on the
design and use of a new compressible aerated-flow model that was developed to gain a
better understanding of the physics of violent water-wave impacts. A prerequisite for
the model was that it must accommodate the most important aeration effects observed
in the GWK tests. Consequently, the model embraces numerical descriptions of both
entrained air and trapped air.

In order to facilitate a qualitative comparison with the laboratory results, the
numerical investigation is applied to a two-dimensional situation similar to that with
the vertical wall in the GWK tests. However, because compressibility effects are
important only in the immediate vicinity of the wall, where high pressures occur,
the wave transformation away from the wall region is treated by an incompressible
potential-flow solver. The compressible aerated-flow model is an extension of the
one developed by Peregrine & Thais (1996) for a two-dimensional unsteady flow
and includes an equation for energy conservation to allow for pressure shock waves.
The aerated water is treated as a homogeneous mixture of incompressible liquid and
adiabatically compressible gas. The numerical solution builds on the finite-volume
framework ‘Clawpack’ (LeVeque 2002) and is based on an exact Riemann solver
for the hyperbolic model equations. The results from a preliminary version of this
compressible-flow model have been presented by Bredmose et al. (2004), Peregrine
et al. (2004) and Peregrine et al. (2006).

A series of computations is presented in which an offshore wave group propagates
over the mound towards the vertical wall. Impacts ranging from the flip-through type
(Cooker & Peregrine 1990, 1992; Peregrine 2003), which trap no air, to overturning
breakers, that trap large pockets of air, are successfully obtained by varying the
initial offshore wave height. The great sensitivity of impact pressures to the incident
wave conditions is apparent from the preliminary incompressible potential-flow
computations. However, the main purpose of these computations is to provide input
data for the compressible aerated-flow model. Results from the aerated-flow model
confirm the strong sensitivity of the impact pressures to the incident wave conditions,
which at least partly explains the strong variations found in the experimental results
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of Bullock et al. (2007). The numerical results also support the observation of Bagnold
(1939) and Hattori et al. (1994) that the highest pressures occur for impacts that trap a
small air pocket. As with physical measurements, the impact pressures in the vicinity
of trapped air pockets exhibit the oscillatory fluctuation associated with alternate
compression and expansion of the air. The computations also reveal the presence of
pressure shock waves in the aerated water phase that propagate down the wall away
from the impact zone. It is shown that reflection of this pressure wave from the top
of the mound can lead to the generation of large pressures at the foot of the wall.
An evaluation of impact forces and impulses indicates that they are less sensitive to
the wave height than the maximum pressures.

The paper opens with a summary of physical characteristics of violent wave impacts
as found in the GWK experiments (§ 2). The strategy for the numerical description of
such violent wave impacts is presented in § 3, including the novel compressible aerated-
flow model and its combined application with the incompressible potential-flow model.
The numerical solution of the compressible aerated-flow model is described in § 4,
together with the details of two one-dimensional validation tests. Results for violent
wave impacts are given in § 5, while limitations of the computations, such as the
lack of three-dimensionality, are discussed in § 6. At and near a violent impact, the
flow accelerations can often exceed 100 g. This means that gravity has little influence
on the local pressure field and that violent impacts in any direction between a
liquid and a structure could generate similar pressure fields. The generality of the
compressible aerated-flow model makes it applicable to many impact situations, not
necessarily related to coastal structures, where air entrapment and/or entrainment
occurs. Potential marine applications include ship slamming and flow inside LNG
tankers.

2. Physical characteristics of violent wave impacts
The physical observations most directly related to the numerical study were provided

by the large-scale GWK tests with a vertical wall and regular waves generated in what
was essentially fresh water. Two vertical arrays of transducers were installed 1 m apart
up the front of the wall. One array consisted of four pressure aeration units (PAUs),
while the other consisted of nine Druck pressure transducers supplied by the FZK (the
FZK units). The PAUs were specially developed by Bird et al. (1998) for use in both
field and laboratory so that the air–water fraction or voids ratio could be estimated
at locations where pressure measurements were also obtained. While the estimates
were qualitative rather than quantitative, a striking feature of most of the aeration
records was the way in which the voids ratio reached a minimum around the time the
impact pressure reached a maximum. Even under the controlled conditions of regular
waves, the impact pressures were found to be highly variable both temporally and
spatially and often far from two-dimensional. The impacts associated with irregular
waves also exhibited these characteristics both in the laboratory and in the field.

Despite the variability which introduced both subjectivity and overlap into the
classification process, it was found that the most violent impacts could be divided
into two classes termed ‘low-aeration’ and ‘high-aeration’. Schematic representations
of the associated pressure-time histories can be found in Bullock et al. (2007, figure 4).
The impacts were classed as low aeration when the PAU measurements indicated that
the water contained relatively little air (typically a voids ratio �5 % during impact)
and the main pressure spike was both high and of short duration (about 80–200 ms
from initial impact till resemblance of quasi-hydrostatic pressure). In this type of
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Figure 1. Wave impact with trapped air pocket in GWK, sloping wall. At the instant of this
picture the air escapes from the pocket by bursting through the water.

impact, there was no evidence of air entrapment and it was deduced that the aeration
was due to entrainment and/or entrapment of air pockets that were too small to
detect individually. Impacts were classed as high-aeration when the water contained
a lot of air and the main pressure spike was of a relatively long duration. In such
cases, water often reached at least one of the higher transducers before it reached all
of the lower transducers, which suggested that much of the increase in aeration was
due to entrapment. Further evidence of either an appreciable air pocket or a dense
cloud of bubbles was provided by damped oscillations in both pressure and voids
ratio compatible with the alternate expansion and compression of the air following
the time of peak pressure. Sub-atmospheric pressures were often recorded at the
end of the first expansion phase. Pressure records similar to those described above
have been recorded by many other researchers at various scales in both laboratory
and field (Bagnold 1939; Blackmore & Hewson 1984; Partenscky 1988; Oumeraci,
Klammer & Partenscky 1993; Hattori et al. 1994; Walkden et al. 1996) indicating
that such behaviour is not specific to a particular structural geometry. Consequently,
such pressure variations can be considered to be broadly generic for the breakers that
generate the highest impact pressures.

There are only a few instances of successful imaging of the rapid motions associated
with wave impacts, such as Chan & Melville (1988) and Hattori et al. (1994). In the
GWK only views from above were available. However, a good impression of the
experiments can be obtained from the video that is available at the electronic archive
of the journal. Some indication of the violence of an impact is provided by figure 1
which, from close observation of such events, we interpret as showing the emergence
of air from a trapped compressed-air pocket. From knowledge of the exposure time,
we estimate that drops of water within the jet are travelling at up to 50 m s−1, which
is an order of magnitude greater than the wave celerity.
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Figure 2. Time scales and pressure scales for (a) gentle waves reflecting from the wall and
(b, c) a breaking wave generating a violent impact with entrapment of air. Note that the
pressure axis of (b) only extends to 20 kPa. Consequently, the pressure spikes shown in (c) go
well beyond the range of (b). All pressures shown are gauge pressures.

To clarify our interpretation of a ‘violent impact’ and to illustrate the typical
magnitude and distribution of pressures measured in the GWK, figure 2 shows records
from a vertical wall test with regular waves of 8 s period and a fully developed offshore
height of 1.25 m. The still water depth at the wall (h) was 1.25 m, which corresponded
to an offshore depth of 4.25 m at the toe of the mound. Note the different time
and pressure scales of the plots. Figure 2(a) shows three examples of the pressures
recorded shortly after the initial waves reached the wall and the height of successive
waves was still increasing towards 1.25 m. In the first two, the waves were sufficiently
low to simply rise up the wall without impact and were more or less totally reflected,
a form of behaviour sometimes known as ‘sloshing’. The third wave (centred around
t = −4 s) was slightly steeper and the records have a characteristic double peaked
structure. The initial peak corresponds to the pressure needed to accelerate water up
the wall. When the water is at its maximum elevation on the wall, it is almost in
free fall so that, although the crest may stretch some distance up the wall, it makes
little contribution to the pressure below. The second peak corresponds to the pressure
needed to decelerate the downward-falling water. We refer to this aspect of pressure
plots as ‘reflective pressure’.

Figure 2(b) shows an impact from the same test, but for a later time when the
wave height was fully developed. After passing the mound, these waves were either
about to break or just breaking as they reached the wall. The pressure plot can be
divided into three parts. The initial ‘impact pressure’ (for which the full extent exceeds
the vertical plotting range), an ‘oscillatory pressure’ characteristic of a high-aeration
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impact and the ‘reflective pressure’ also seen in figure 2(a). In engineering circles, the
reflective pressure variation is often referred to as the quasi-hydrostatic phase.

The complexity of a violent impact is further illustrated by figure 2(c), which shows
the full extent of the violent ‘impact pressure’ of figure 2(b) but on a much shorter
time scale. Before considering this figure in detail, it is useful to recall that a 1m depth
of water generates a hydrostatic pressure of around 10 kPa and that one atmosphere
is around 100 kPa. Thus, a pressure of 1 MPa corresponds to 100 m of hydrostatic
pressure and 10 atmospheres. The maximum impact pressure of the current example
is as much as 40 times larger than any oscillatory or reflective pressure in figure 2(a)
and (b). It is these very strong impact pressures that are the subject of this paper.
Note that the time span of figure 2(c) is 0.2 s, which is one-fortieth of a wave period.

The pressure-time series of figure 2(c) show many features typical for a high-aeration
impact. Most notably, the pressure profiles for all four transducers show a common
oscillation after the instant of maximum pressure. The two highest transducers (FZK
12 and FZK 13) show sub-atmospheric pressures after the main pressure peak. This,
along with the smooth rise up to maximum pressure of FZK 12, is a clear indicator
of trapped air. Simultaneous aeration measurements of the PAUs (not shown here)
confirm this. The largest pressure peak (895 kPa) is measured by FZK 12, which is
1.38 m above the toe of the wall, and has a duration of less than 5 ms. FZK 11, which
is 1.03 m above the toe, shows a broader peak with a maximum pressure of 294 kPa,
a duration of about 20 ms and an initial pressure rise which is less smooth than for
FZK12. All four signals have a maximum pressure around t = 138.645 s. A close
inspection of the curves reveals that maximum pressure occurs first at FZK 12, with
the other FZK transducers recording pressure maxima at time delays that increase
with their distance from FZK 12. This indicates that the impact pressure travels away
from the impact zone with finite speed.

As with most of the violent wave impacts recorded in the GWK, there were
significant differences between the maximum pressures recorded by the FZK and PAU
arrays of pressure transducers in the event considered above. This three-dimensionality
combined with the variability in behaviour between nominally identical waves makes
interpretation difficult. When also combined with the great sensitivity of the impacts
to wave parameters described later in this paper, a close comparison of the physical
and numerical results for particular impact events is of limited value. Given that
conditions in the field are even more variable than those in the laboratory, the main
value of the present numerical study is the insight provided into the fundamental
physics of the process. The numerical results presented in the remainder of this
paper are therefore based on representative model conditions rather than directly on
measured wave data. Further details of the variability found in the laboratory may
be found in Bullock et al. (2007).

3. Modelling strategy
The high degree of variability between the impact pressures recorded for successive

waves in the GWK indicates that the impact process is highly sensitive to breaker
shape. Numerous factors influence the precise shape of a particular breaker, including
the bathymetry, the characteristics of the incident wave and history effects associated
with the breaking, impact and reflection of previous waves. Numerical replication of
specific GWK impacts would therefore require whole series of waves to be modelled in
considerable detail. As the resources for this were not justified, a more computationally
efficient means of gaining insight into the physical processes at work in an impact was
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Figure 3. Modelling strategy. (a) The initial conditions for the incompressible model with a
1.45m offshore wave height. Note the strong exaggeration of the vertical axis relative to the
horizontal axis. (b) A computed set of free-surface profiles obtained with the incompressible
model at 0.5 s intervals as the offshore wave propagates towards the wall. The dashed
rectangular area adjacent to the wall denotes the domain of the compressible model. (c) The
domain of the compressible model and the initial condition for density.

adopted. This entailed modelling a range of breaking wave conditions in circumstances
similar to but not identical to those observed in the GWK with a view to obtaining
knowledge that would be relevant to generic types of wave impact in both laboratory
and field.

The computations presented in this paper are two-dimensional. This is probably
the main limitation of the computational study as the effects of three-dimensional
instabilities along the wavefront and the associated three-dimensional dynamics of air
pockets are thereby precluded. However, as a first step towards an accurate numerical
description of the physics of aerated wave impacts, a two-dimensional model has the
advantage of simpler parameterisation and analysis of results. An extension of the
study to three-dimensional is discussed in § 6.

The overall approach for the modelling is illustrated in figure 3, where the horizontal
(x) and vertical (y) coordinates have origins at the wall and SWL respectively and
the waves propagate in the positive x-direction. Because compressibility is of little
significance until there is a strong interaction with the wall, the wave’s approach to the
wall is modelled by means of an incompressible two-dimensional boundary-integral
method. Only the case of a vertical wall is considered and the profile of the mound
is approximated by quarter of an ellipse as detailed below. The initial condition
consists of an incident wave group, established by modulating a fully nonlinear
regular wavetrain (Fenton 1988) as illustrated in figure 3(a). An example of wave
transformation over the mound computed with this model is shown in figure 3(b).
Results from the incompressible model are then used to define both the initial and
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driving offshore boundary conditions for a novel compressible-flow model within the
region close to the wall as indicated in figure 3(b) and (c).

3.1. Boundary-integral model for incompressible wave transformation

The main purpose of the incompressible-flow computations is to provide initial and
boundary data for the compressible-flow model. However, the incompressible results
also provide insight into some of the characteristics of wave impacts as reported
in § 5.

The assumption of incompressible, inviscid, irrotational two-dimensional flow
permits the use of a boundary-integral formulation for a potential flow. The
atmospheric pressure is taken to be constant and no surface tension effects are
included. The programme used is an extension of the accurate solver for a spatially
periodic domain developed by Dold & Peregrine (1986). A full description of the
method may be found in Dold (1992). This model was also used by Bredmose
et al. (2003) to compute internal sloshing in a vertically forced wave tank. The
numerical approach is to discretize the free surface with Lagrangian points and
time step the position and velocity potential of these points. This involves solving
Laplace’s equation for the normal derivative of the free surface velocity potential
using a boundary-integral formulation. The accuracy of the time-integration scheme
is improved by solving additionally for the first two time derivatives of the normal
velocity at the free surface and utilizing the explicit Taylor expansion for the time
variation of the free surface position and velocity potential. High spatial and temporal
accuracy, with great computational efficiency, are further obtained by the use of high-
order algorithms for the evaluation of derivatives along the fluid boundary and
adaptive time stepping.

The extension to a domain bounded by uniform flow conditions is described
by Tanaka et al. (1987). The no-flux condition through the seabed is treated by
incorporating a mirror condition into the boundary-integral equations. Cooker et al.
(1990) describe the further extension, via conformal mapping, to accommodate an
obstacle on the bed. A quarter of an ellipse is used as an approximation for the shape
of the mound in the GWK to gain the benefit of a simple conformal mapping. The
ellipse selected as providing the best overall representation has the same height (3 m)
as the experimental mound but, at 18 m long, is a metre or so shorter.

The incident waves are initiated by the numerical solution of Fenton (1988) for
fully nonlinear regular waves in a constant depth of water with no net mass flux.
The wavetrain is characterized by its wave height H , wavelength L and has one of
its crests at x = x0. A short wave group with three significant crests is produced by
modulating the free surface elevation of the regular waves by the following envelope
function:

ηwavegroup = sech(k(x − x0)/4)ηregular , (3.1)

where k = 2π/L is the wavenumber. The velocity potential at the free surface is
treated similarly. The incident wave group shown in figure 3(a) is obtained with
H = 1.45 m, L = 50 m, x0 = −185 m and an offshore still water depth of 4.25 m.
The computations presented in this paper will differ only with respect to the offshore
incident wave height, H , keeping all other parameters fixed.

The computation is divided into three parts, gradually zooming into the region
close to the wall with increasing resolution. Eventually, the distance between the
discretization points is less than 5 mm, with time steps of less than 0.1 ms. Figure 3(b)
shows the evolution at 0.5 s intervals of the profile of the wave illustrated in figure 3(a)
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as it shoals over the mound. Figure 3(c) shows the wave beginning to overturn when
it is roughly 0.5 m away from the wall.

3.2. A model for compressible aerated flow

The compressible aerated-flow model extends the incompressible computation up to
the wall and accommodates both entrapment and entrainment of air by modelling the
compressibility of the air outside the water boundary and permitting a compressible
air-fraction to be included within the water. This enables the flow to be followed
throughout a violent impact after the wall is hit by an overturning breaking wave.

As a main assumption for the model, the aerated fluid is considered to be a
homogeneous mixture of incompressible liquid (pure water) and compressible gas
(air). It is also assumed that there is only one velocity field and one pressure field.
The quantity β is defined as the volume fraction of air in a fluid element. The density
within the gas is denoted by σ , such that βσ is the overall density of gas in the fluid
element. The remaining volume fraction 1−β is occupied by liquid of density M . The
weighted average of density is therefore

ρ = βσ + (1 − β)M, (3.2)

where M = 1000 kg m−3 is used throughout this study.
In the absence of shock waves, the compression of the air is assumed to be adiabatic

and follows the ideal gas law

p/p0 = (σ/σ0)
γ . (3.3)

Here, σ0 and p0 are the reference ambient air density and the atmospheric pressure,
while γ = 1.4 is the adiabatic exponent of compression. We take σ0 = 1.29 kgm−3

and p0 = 105 Pa throughout this study.
The possibility of pressure shock waves makes the above pressure description

incomplete. To accommodate shock waves, conservation of energy must be ensured
in addition to the conservation of mass and momentum (see e.g. Courant & Friedrichs
1948, § 54). This allows the entropy to increase due to a shock wave, whereas (3.3)
enforces the conservation of entropy (isentropic flow). Following standard theory of
gasdynamics, we consider the local energy density to be the sum of internal and
kinetic energy

E = ρe + 1
2
ρu · u, (3.4)

where e is the internal energy per unit mass and u = (u, v) is the velocity vector in the
Cartesian (x, y) coordinates. The internal energy per unit mass is the sum of internal
energy for the gas fraction (eg) and liquid fraction (e�) of the mixture

e =
1

ρ
(βσeg + (1 − β)Me�). (3.5)

As the liquid is considered incompressible e� is constant, and can be set to zero without
loss of generality. For an ideal polytropic gas, the internal energy is proportional to
the absolute temperature T through eg = cvT , where cv is the specific heat at constant
volume. Furthermore, for an ideal gas cv = R/(γ − 1), where R is the universal gas
constant and T can be expressed from the ideal gas law p = σRT . This leads to

eg =
1

σ

p

γ − 1
, (3.6)
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which is a well-known result in gasdynamics (see e.g. Courant & Friedrichs 1948, § 3).
The insertion of (3.5) and (3.6) into (3.4) now gives

E =
βp

γ − 1
+

1

2
ρ(u2 + v2) (3.7)

for the energy density of the aerated fluid, which is consistent with the result of
McCabe (2003) and reduces to the standard expression for compressible air flows for
β = 1.

The flow model consists of conservation equations for mass, x-momentum, y-
momentum, gas mass and energy. These are written in the conservation form as
follows:

ρt + (ρu)x + (ρv)y = 0, (3.8a)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0, (3.8b)

(ρv)t + (ρuv)x + (ρv2 + p)y = −ρg, (3.8c)

(βσ )t + (βσu)x + (βσv)y = 0, (3.8d )

Et + {(E + p)u}x + {(E + p)v}y = −ρgv. (3.8e)

For β ≡ 1 (pure air), the fourth equation becomes identical to the first and the
system reduces to the Euler equations of gasdynamics. For smooth (differentiable)
flows where no shock waves appear, the energy conservation equation can be replaced
by the explicit use of the isentropic pressure law (3.3). This is detailed in Appendix A.
However, as pressure shock waves are expected for the flows to be modelled, the
conservation of energy is retained in the model. For later convenience we write (3.8)
in the more compact form

qt + {F(q)}x + {G(q)} y = Ψ (3.9)

with

q =

⎛
⎜⎜⎜⎜⎝

ρ

ρu

ρv

βσ

E

⎞
⎟⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

βσu

(E + p)u

⎞
⎟⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎜⎝

ρv

ρuv

ρv2 + p

βσv

(E + p)v

⎞
⎟⎟⎟⎟⎟⎠ , Ψ =

⎛
⎜⎜⎜⎜⎝

0

0

−ρg

0
−ρgv

⎞
⎟⎟⎟⎟⎠ . (3.10)

This defines the state vector q = (ρ, ρu, ρv, βσ, E), the flux functions (F, G) in the
x and y directions respectively and the source term Ψ incorporating the effects of
gravity.

3.3. Combined use of the two models

The effects of entrained air and trapped air are expected to be significant only
in regions where strong pressures occur. The compressible aerated-flow model is
therefore only applied in a domain close to the wall, as indicated in figure 3(b).
The domain is a subset of the incompressible flow domain, bounded by the vertical
wall at right and the offshore and upper boundaries placed in x = −1.25 m and
y = 1.25 m, respectively. The lower boundary is defined by the top of the mound,
which is assumed to extend horizontally from the toe of the wall in the compressible-
flow model. This simplification is justified on the basis that, even farthest from the
wall on the left boundary of the compressible domain, the distance between the
surface of the elliptical mound and the computational horizontal boundary is less
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than 0.6 % of the still water depth h. For all the computations presented in the body
of this paper, the domain is discretized using a 500 × 1000 cell equidistant grid. This
corresponds to a cell size of 2.5 mm × 2.5 mm. An analysis of the grid convergence
for the numerical results shows that while the qualitative dependence of pressure
and force is converged at this resolution, the converged peak pressures for the most
violent impacts studied in § 5 are likely to be even larger than found on the 500 ×
1000 cell grid. The limitations of the present grid are discussed in more detail in
Appendix B.

The initial conditions for density, velocity and pressure in the compressible model
are taken from output of the incompressible computations, as illustrated in figure 3(c)
for the density. Due to the assumption of compressible flow within the aerated-flow
model, an initial air fraction for the water phase is needed when initializing the model.
This is because the liquid part of the mixture is still considered to be incompressible.
For all the computations presented here, an initial aeration of 5 % was chosen. While
this initial air fraction can be lowered, zero aeration cannot be chosen as this would
lead to infinite sound speeds (see (4.8)) and thereby require infinitely small time steps.
Although no direct measurements were taken, there is good reason to suppose that
an aeration level of magnitude O(5 %) can easily exist in water close to a structure
prior to the type of impact considered here.

The free surface is initialized by a simple first-order approach in which cells with
centre points inside the water phase of the incompressible-flow solution are filled with
5% aerated water, while cells with centre points outside the water are filled with air.
Because the potential-flow solution does not include the velocity field within the air, a
two-step approach is taken for establishing the initial velocity field within the air.
First, the compressible-flow model is run with zero velocities in the air as the initial
condition, while the aerated water phase is initialized with the velocity field of the
potential-flow solution. After a short time (24 ms for the computations presented here),
the water motion has initiated the air motion and the water phase is re-initialized
from the potential-flow solution.

The compressible model is run with impermeable, free-slip wall boundary conditions
at the right boundary (vertical wall) and the bottom boundary (mound top). The
offshore boundary (left) is driven by the potential-flow solution for the water phase
until the incompressible model breaks down due to excessive curvature or acceleration,
or because there has been a direct impact on the wall. After this time, as a first
approximation, the last valid solution from the incompressible computation is simply
imposed as a static inflow condition. This is considered to be acceptable because the
time scale of the impacts is far smaller than the time scale of the wave motion. Within
the air, a zero-gradient boundary condition is applied at the offshore boundary at
all times so that the air velocity field is continuous across the boundary. A similar
condition is applied at the upper boundary, except for the pressure field where
the zero-gradient criterion is applied to the excess pressure in order to produce a
hydrostatic pressure gradient across the boundary.

The influence of the placement of the left boundary has been checked by running
an additional computation with the boundary moved 0.5 m in the offshore direction.
A wave height of H = 1.45 m was used because it is associated with the largest impact
considered in § 5. The predicted maximum pressure and force were found to decrease
by 1.7 % and 1.2 % respectively. Given the strong sensitivity of the impact pressures
to the wave shape detailed in § 5, these relatively small deviations were considered to
be insignificant.
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4. Numerical solution of the compressible aerated-flow model
The possibility of shock waves implies that it is necessary to solve the model by

means of a numerical method capable of handling them. We use a second-order,
finite-volume method, utilizing the Fortran package ‘Clawpack’ (LeVeque 2002). This
finite-volume approach is based on solving Riemann problems over the numerical cell
interfaces in each time step. In this context an exact Riemann solver specific for the
model equations (3.8) has been developed.

To give an appropriate background for the Riemann solver theory, a brief
introduction to the finite-volume method is given in § 4.1. The exact Riemann solver is
presented in § § 4.2–4.6 followed by two one-dimensional validation tests of the model
in § § 4.7–4.8.

4.1. Finite-volume approach

The model equations stated in (3.8) are the differential form of the more general
statement of conservation of the state vector q within a fluid element V

d

dt

∫
V

q dt +

∫
δV

(Fnx + Gny) ds =

∫
V

Ψ dV, (4.1)

where (nx, ny) = n is the outward-pointing normal vector along the boundary of V ,
δV . The above formulation involves no assumptions of smoothness or differentiability
of q and therefore allows for both shock waves and discontinuities. Indeed, (3.8) can
be obtained from (4.1) by applying the divergence theorem to the middle integral and
letting V become infinitely small. However, in doing so, one has assumed the solution
to be smooth and (3.8) is only valid for the subset of smooth solutions to (4.1).

The formulation (4.1) is suited to the application of a finite-volume method. We
choose to solve the model on an equidistant Cartesian mesh in the (x, y)-plane
with spacing 	x and 	y. Dividing (4.1) with the cell area 	x	y and integrating
the flux function along the boundaries gives an equation for the cell average of q,
q̄ ≡

∫
V

q dV/(	x	y),

∂

∂t
q̄ i,j +

1

	x

[
Fi+1/2,j − Fi−1/2,j

]
+

1

	y

[
Gi,j+1/2 − Gi,j−1/2

]
= Ψ i, j, (4.2)

where, for example, Fi+1/2,j denotes the flux function F from (3.10) evaluated at the
interface between cell (i, j ) and (i + 1, j ). Time integration gives

q̄n+1
i,j = q̄n

i,j − 1

	x

∫ tn+1

tn

[
Fi+1/2,j − Fi−1/2,j

]
dt

− 1

	y

∫ tn+1

tn

[
Gi,j+1/2 − Gi,j−1/2

]
dt +

∫ tn+1

tn

Ψ i, j dt, (4.3)

which thus expresses how to update the cell average of q̄ in a computational cell in
terms of fluxes over its boundaries.

The flux at the cell interface is obtained by solving the Riemann problem between
the states at each side of the interface in every time step. The Riemann solution
includes the state at the interface and thus allows a direct evaluation of the flux
through (3.10). This approach, known as Godunov’s method (Godunov 1959), is valid
for discontinuous as well as smooth solutions and gives first-order accuracy in space
for the latter case. Second-order accuracy in space is achieved by utilizing the ‘waves’
of the Riemann problem in combination with numerical limiters that turn off the
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second-order corrections in the vicinity of shocks. Specifically, the results shown in
this paper make use of the ‘minmod’ limiter. Details of the second-order technique
and limiters can be found in LeVeque (2002).

The overall time stepping of (4.2) makes use of dimensional splitting and a fractional
step method for the source term. First, q̄ is updated through (4.2) taking only the
contribution from the F -flux into account. Next, an update due to the G-flux is made
and the time step is completed by an update due to contribution from the source term
Ψ . This type of dimensional splitting and source term splitting is called Godunov
splitting and is formally only first-order accurate in time. LeVeque (2002) notes that,
in practice, the error induced by Godunov splitting is often small compared with the
numerical errors implied by the numerical method as a whole.

4.2. The Riemann problem

The basic ingredient in solving (4.2) numerically is the solution of the homogeneous
one-dimensional Riemann problem for (3.8). This provides the necessary information
for evaluating the numerical fluxes over the cell interfaces. The one-dimensional
Riemann problem is stated as the initial value problem:⎛

⎜⎜⎝
ρ

ρu

βσ

E

⎞
⎟⎟⎠

t

+

⎛
⎜⎜⎜⎝

ρu

ρu2 + p

βσu

(u + p)E

⎞
⎟⎟⎟⎠

x

=

⎛
⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎠ (4.4)

with initial condition

q̃(x, 0) =

{
q̃L x � 0,

q̃R x > 0.
(4.5)

Here q̃ = (ρ, ρu, βσ, E) is the state vector for one-dimensional flow and q̃L and q̃R

are two different states. The structure of the solution can be studied in terms of a
local linearization of the equations

q̃ t + Aq̃x = 0, (4.6)

where Ai,j = ∂fi/∂q̃j is the Jacobian of the system (4.4). This matrix can be expressed
in terms of q̃1, . . . q̃4 or the primitive variables and is not shown here. For the above
system A has the eigenvalues

λ1 = u − c, λ2 = u, λ3 = u + c, (4.7)

where

c =

√
γp

βρ
(4.8)

is the speed of sound and where λ2 has multiplicity 2. This means that the solution to
the initial value problem (4.5)–(4.6) consists of three waves, propagating with speeds
(u − c, u, u + c) away from x = 0. We denote the wave corresponding to λ1 a one-
wave, and likewise for the two-wave and three-wave. These waves separate regions of
constant states; see figure 4. Thus, if the state in x = 0 is known, the flux function
can be evaluated for this specific state, yielding the first-order flux for Godunov’s
method. Note that these waves have nothing to do with the physical water waves for
which the model will later be applied. The waves discussed here in the context of the
Riemann problem are local waves at the grid level, resulting from the difference in
state across cell interfaces.
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q~L

q~LM q~RM

q~R

λ1 = u – c
λ2 = u

λ3 = u + c

x

t

Figure 4. Structure of the one-dimensional Riemann problem.

It can be shown that the one-family and three-family of characteristics for the
nonlinear system (4.4) are ‘genuinely nonlinear’, whereas the two-family is ‘linearly
degenerate’. In this case, the linear structure of three waves separating constant states
also holds for the nonlinear system; see LeVeque (2002). The solution to the Riemann
problem can then be found by connecting the initial left and right states with waves
(i.e. jumps in q̃) that satisfy the fully nonlinear governing equations (4.4). If the waves
are smooth functions, the jump conditions can be expressed through the conservation
of Riemann invariants across the waves. Alternatively, the waves may be shock waves
and appropriate shock conditions must be enforced.

4.3. Riemann invariants and shock conditions

Consider the wave travelling with speed λp and introduce the travelling wave
coordinate ξ = x − λpt . Insertion into (4.6) gives −λp q̃ ′ + Aq̃ ′ = 0, which is seen to
hold only if

q̃ ′(ξ ) = α(ξ )rp(q̃(ξ )). (4.9)

Hence, for a travelling wave solution to exist, q̃ ′(ξ ) must be proportional to the
eigenvector rp . We now look for functions w(q̃) that are constant for all ξ . Such
functions satisfy (d/dξ )w(q̃(ξ )) = ∇∇∇w · q̃ ′ = 0, which by using (4.9) yields

∇∇∇w · rp = 0. (4.10)

Hence, functions w(q̃) satisfying ∇∇∇w · rp = 0 are constant for all ξ and are thus
invariant across a p-wave. Such functions are called Riemann invariants. For the
system (4.4) there are three Riemann invariants for each wave. For the one-wave,
these are

w11 =
βσ

ρ
, (4.11)

w12 = u + 2
βc

γ − 1
, (4.12)

w13 = p/σγ , (4.13)
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Figure 5. Definition sketch for derivation of the Rankine–Hugoniot conditions.

where c is given by (4.8). The conservation of w13 shows that the ideal gas law applies
all over the one-wave. The two-wave has Riemann invariants

w21 = u, (4.14)

w22 = p, (4.15)

w23 = σ. (4.16)

This wave is known as a contact discontinuity. It is advected with the fluid speed
u and does not carry jumps in u or p. Finally, the three-wave has the Riemann
invariants

w31 =
βσ

ρ
, (4.17)

w32 = u − 2
βc

γ − 1
, (4.18)

w33 = p/σγ , (4.19)

which are very similar to those of the one-wave.
The one-wave and three-wave can also be shock waves. In this situation, the flow

is not smooth and the differential description breaks down. Jump conditions over
the waves, however, may be expressed in terms of shock conditions. Consider a
shock moving with speed s from left to right; see figure 5. The conservation of each
element of q̃ gives s(q̃2 − q̃1) − (F(q̃2) − F(q̃1)) = 0, where, for example, F(q̃1) is the
flux function evaluated for q̃ in state one. These conditions are called the Rankine
Hugoniot conditions and for the system (4.4) define four equations to be satisfied
across shock waves:

s(ρ2 − ρ1) − (ρ2u2 − ρ1u1) = 0, (4.20)

s(ρ2u2 − ρ1u1) −
(
ρ2u

2
2 + p2 − ρ1u

2
1 − p1

)
= 0, (4.21)

s(β2σ2 − β1σ1) − (β2σ2u2 − β1σ1u1) = 0, (4.22)

s(E2 − E1) − ((E2 + p2)u2 − (E1 + p1)u1) = 0. (4.23)

4.4. Solution strategy

With known Riemann invariants and shock conditions, the Riemann problem (4.4)–
(4.5) can be solved in the following way. First, an initial guess is made for the pressure
in the middle state pM . Both the pressure p and the fluid velocity u are preserved
over the two-wave and are thus shared between the two middle states; see figure 4.
If pM � pL, the one-wave is a rarefaction wave and conservation of the Riemann
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invariants (4.11)–(4.13) now gives the following formulas for the left, middle state
qLM:

σLM =

(
pM

w13

)1/γ

, (4.24)

βLM =
Mw11

w11(M − σLM ) + σLM

, (4.25)

ρLM =
βLMσLM

w11

, (4.26)

uM = w12 − 2βLM

γ − 1

√
γpM

βLMρLM

. (4.27)

Alternatively, if pM > pL, the one-wave is a shock wave and (4.20)–(4.23) can be used
to calculate the left middle state:

s = uL −

√
(γ + 1)	p + 2γpL

2βLρL

, (4.28)

ρLM =
(γ + 1)	p + 2γpL

(γ + 1 − 2βL)	p + 2γpL

ρL, (4.29)

uM = uL − 	p

√
2βL

((γ + 1)	p + 2γpL)ρL

, (4.30)

βLM =
(γ − 1)	p + 2γpL

(γ + 1 − 2βL)	p + 2γpL

βL, (4.31)

σLM =
(γ + 1)	p + 2γpL

(γ − 1)	p + 2γpL

σL, (4.32)

where 	p = pM − pL. Note that for 	p → 0, the expressions simplify considerably.
For example, in this limit s → uL − [γpL/(βLρL)]1/2, which is the one-wave speed for
the linearized system.

Similarly, if pM � pR , the three-wave is a rarefaction wave and q̃LM is given by

σRM =

(
pM

w33

)1/γ

, (4.33)

βRM =
Mw31

w31(M − σRM ) + σRM

, (4.34)

ρRM =
βRMσRM

w31

, (4.35)

uM = w32 +
2βRM

γ − 1

√
γpM

βRMρRM

, (4.36)
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from the conservation of (4.17)–(4.19). Finally, if pM > pR , the three-wave is a shock
wave and (4.20)–(4.23) give

s = uR +

√
−(γ + 1)	p + 2γpR

2βRρR

, (4.37)

ρRM =
−(γ + 1)	p + 2γpR

−(γ + 1 − 2βR)	p + 2γpR

ρR, (4.38)

uM = uR − 	p

√
2βR

(−(γ + 1)	p + 2γpR)ρR

, (4.39)

βRM =
−(γ − 1)	p + 2γpR

−(γ + 1 − 2βR)	p + 2γpR

βR, (4.40)

σRM =
−(γ + 1)	p + 2γpR

−(γ − 1)	p + 2γpR

σR, (4.41)

where 	p = pR − pM and with similar convergence to the solution of the linearized
system for 	p → 0.

No matter which combination of shocks or rarefactions the one-wave and three-
wave possess, the above procedure gives two values for the middle fluid velocity
uM . The Riemann problem is only solved if these two velocities are identical. This
provides a means of determining pM by iteration, until the two velocities converge. The
iteration is done in terms of the secant method with a starting guess of (pL + pR)/2.

4.5. Transonic rarefaction waves

If the magnitude of the speed of sound becomes similar to the fluid velocity, the
cell interface in x = 0 may lie within the fan of a rarefaction wave. In this case, the
Riemann solution detailed above still holds, but the state in x = 0 must be found
using the structure of the rarefaction wave. To do this, we consider the rarefaction
wave as a centred rarefaction wave, where the state values are simply functions of
the similarity coordinate ξ = x/t,

q̃ = q̃(ξ ) = q̃(x/t). (4.42)

For a one-rarefaction wave the wave speed is λ1 = u − c at all points. From (4.42),
we see that q̃ is constant on the straight lines x/t = ξ and hence λ1 = ξ . As we
are interested in the state at x = 0, we set ξ = 0, which in turn leads to u = c. We
may use this together with conservation of the Riemann invariants (4.11)–(4.13) for
a one-wave to compute the state in x = 0. Combining the associated equations leads
to a scalar equation for ρ0, the density at x = 0:(

w13γM

ρ0

)1/2
(Mρ0w11)

γ /2

(M + (w11 − 1)ρ0)
(γ+1)/2

=
M(γ − 1)w12

(γ + 1)M + 2(w11 − 1)ρ0

. (4.43)

This is solved iteratively by the secant method and the remaining state variables are
easily computed through the conservation of the one-Riemann invariants.

If x = 0 lies within the rarefaction fan of a three-wave, the condition λ3 = u + c =
ξ = 0, together with conservation of the three-Riemann invariants (4.17)–(4.19), leads
to (

w33γM

ρ0

)1/2
(Mρ0w31)

γ /2

(M + (w31 − 1)ρ0)
(γ+1)/2

= − M(γ − 1)w32

(γ + 1)M + 2(w31 − 1)ρ0

, (4.44)

which is solved in the same fashion as for (4.43).
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Figure 6. Initial condition for the piston model problem.

4.6. The Riemann problem for two-dimensional flow

The two-dimensional problem (4.1) is treated through dimensional splitting on a
Cartesian grid. In this approach, one-dimensional Riemann problems are solved over
the cell interfaces along consecutive strips of constant x and y and the solution
strategy outlined above can be applied. However, when solving along an x-strip
(constant y) for a two-dimensional flow, q̄ will contain an added component, ρv

holding the momentum component in the transverse direction. It turns out, however,
that jumps in v are simply advected as part of the two-wave and are left constant over
both the one-wave and three-wave (see LeVeque 2002). Thus, the two-dimensional
Riemann problems can be solved by using the above one-dimensional expressions and
subsequently constructing the values of ρv by using the calculated values of (ρ, vL)
to the left of the two-wave and (ρ, vR) to the right of the two-wave.

4.7. A one-dimensional test with a trapped air pocket

To check the aerated-flow model’s ability to describe the compression of air, the
model is first applied to a one-dimensional problem with a trapped air pocket. The
test configuration is illustrated in figure 6, where a slug of aerated water acts like a
piston and compresses a volume of air against a solid fixed wall. The wall is located
at x = 0 and initially the air is at atmospheric pressure; the front and rear of the slug
are at x = x0 and x = αx0, respectively; the water has a uniform voids fraction of
β0; and the slug has velocity u0. Wall boundary conditions (symmetry in (ρ, βσ, E)
and antisymmetry in ρu) are applied at x = 0 while a radiating boundary condition
(∂ q̃/∂x = 0) is imposed at the left-hand boundary at x = xL.

Figure 7(a) shows the contour plot of pressure in the (x, t) plane resulting from
a numerical solution in which x0 = 0.4m, α = 2.5, u0 = 8 m s−1 and β0 = 0.01. The
domain was resolved with 800 computational cells, with xL = 1.6 m and the two white
curves mark the front and rear trajectories of the ‘water piston’ as defined by the
ρ = 500 kg m−3 contours. The compression of the air pocket is clearly seen. Pressure
oscillations can be seen inside the aerated water.

The above arrangement can also be modelled on the basis of a simple one degree
of freedom system by assuming that the slug of aerated water is rigid and that the
air inside the pocket has a uniform pressure and negligible velocity or acceleration. If
the pocket pressure is assumed to follow the ideal gas law for adiabatic compression
p = p0 (x0/x)γ , the equation of motion for the piston is

ρ(α − 1)x0ẍ = p0

(
x0

x

)γ

− p0, (4.45)

which can readily be rewritten as a first-order ODE system and integrated numerically
by means of a standard ODE solver.

A solution for the temporal variation in pocket pressure obtained from this simple
model is compared with the pressure at the wall obtained from the compressible
aerated-flow model in figure 7(b). The striking agreement between the two sets of
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Figure 7. (a) Pressure in (x, t)-plane for one-dimensional ‘water piston’ test problem. The
pressure unit is (p −p0)/p0 and the white curves mark the trajectory of the back and front end
of the piston. (b) Comparison of pressure at the wall obtained by solution of the aerated-flow
model and (4.45), respectively.

results indicates that the compressible aerated-flow model can accurately reproduce
the main features of air entrapment situations of at least this level of complexity.

4.8. One-dimensional tests for shock wave passing an air–water interface

One feature of the aerated mixture modelled is the dramatic reduction of the speed
of sound for intermediate values of the gas volume fraction β . This effect can be seen
by combining (4.8) and (3.2) and utilizing that M � σ

c =

√
γp

β(βσ + (1 − β)M)
≈

√
γp

Mβ(1 − β)
. (4.46)

When a free surface is advected by the numerical model, some smearing of the
air–water interface will inevitably occur. The transition from water to air will happen
over a small number of grid cells, and in this transition region the speed of sound will
be smaller than in the water and air phases on each side. Figure 8 presents results for
two tests that were carried out to assess what happens when a pressure wave passes
such a region.

Figure 8(a) shows results for when a pressure shock wave travels from air into
water. The initial density distribution is depicted in the upper panel for a sharp
interface (black line) and a smeared interface that takes up around 5 grid cells
(grey line). The panels below show pressure profiles for increasing time from top to
bottom. At t = 0 s, the pressure wave propagates towards the interface. The further
snapshots show how the interaction with the interface has caused a transmitted wave
to propagate into the water phase and a reflected wave to move back through the air
phase. For a sharp interface, both waves are shock waves. For a smeared interface
the transmitted wave has an oscillatory profile with a front amplitude greater than
that of the transmitted shock wave for a sharp interface. This behaviour is due to the
reduced sound speed over the smeared interface leading to a local accumulation of
pressure when the initial shock wave passes through the interface. The presence of a
local excess pressure excites an oscillation in the interface region and this gives the
transmitted wave an oscillatory tail.

Figure 8(b) shows results for when a pressure shock wave travels from water into
air. For a sharp interface, the wave is reflected as a rarefaction wave. The transmitted
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Figure 8. One-dimensional tests of shock wave propagation through an air–water interface.
(a) Propagation from air into water. (b) Propagation from water into air. The upper plots show
the initial density profile, while the lower plots show pressure profiles with time increasing in
the downward direction.

wave is barely visible. In the case of a smeared interface, the reflected wave has an
oscillatory tail. However, these oscillations are smaller than in the previous test and
do not change the overall profile of the reflected wave to the same extent.

The above tests indicate that numerical smearing combined with the reduction in the
speed of sound that occurs at intermediate gas volume fractions can lead to spurious
pressure oscillations when shock waves pass the air–water interface, especially from
the air side. In our computations, the air–water interface typically spans 5–10 grid
cells. Grid refinement therefore helps to reduce the phenomenon, as the geometrical
extent of the smeared interface is thereby reduced and the travel time through the
smeared interface becomes smaller. The potential limitation of the model accuracy
associated with this phenomenon, however, must be kept in mind when examining
the model results.

In a real overturning breaker, the air–water interface may take the form of a layer
of bubbly water. Hence, a similar behaviour due to the local reduction in sound speed
may occur, although the thickness and aeration level of the layer in this case is a
result of a physical process rather than numerical smearing.
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Figure 9. Computed surface profiles for final approach to impact for H = 1.43 m. The time
interval between profiles is 0.005 s. The toe of the wall is at y = −1.25m.

5. Numerical results for aerated wave impacts
As outlined in § 3, the aerated-flow model is driven by initial and boundary

data from an incompressible potential-flow model. Although the incompressible
computations neglect air effects, the results illustrate some of the important
characteristics of breakers, including the way in which the shape of the free surface
profile evolves up to the time of impact. This section therefore commences with a
brief description of some incompressible computations (§ 5.1) before proceeding with
a more detailed presentation of results from the aerated-flow model in § § 5.2–5.5.

5.1. Results of incompressible computations

The incompressible computations are initiated with an offshore wave group of wave
height H as described in § 3. Figure 9 shows profiles at 5 ms intervals for the final
approach towards the wall for H = 1.43 m. Although the first couple of profiles show
a crest that is beginning to overturn and seems likely to trap an air pocket against the
wall, no entrapment occurs due to the fact that the trough suddenly accelerates and
forms a jet that shoots up the wall. The consecutive profiles closely resemble a set
of concentric quarter circles that contract towards a common centre. This indicates
that all the surface particles are converging until the jet forms. Computations for this
wave broke down shortly after the last profile plotted due to the strong curvature
and acceleration of the free surface.

Cooker & Peregrine (1990) termed events of this type a ‘flip-through’ impact; see
also Peregrine (2003). The name is derived from the fact that the jet up the wall ‘flips’
through the rapidly closing gap between the overturning crest and the wall. Thus, in
a flip-through impact, the front of the wave never makes direct contact with the wall.
The experimental papers of Hattori et al. (1994) and Lugni, Brocchini & Faltinsen
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Figure 10. Surface profiles at the end of the incompressible-flow computations for seven
different wave heights H . The toe of the wall is at y = −1.25m. Each curve is labelled with
the value of H in metres. (b) is a close-up of (a).

(2006) and recent experiments at University of Plymouth (Hunt-Raby, Jayaratne,
Bullock & Bredmose 2008, private communication) confirm the physical existence of
such impacts. In most physical situations, the conditions are not as perfect and well
defined as in the numerical calculations. Consequently, the boundary between flip-
through and overturning impacts, in which the crest does strike the wall, is generally
somewhat blurred.

Figure 10 shows surface profiles for waves of different initial offshore wave height
(H ) at the time the numerical computations broke down either due to excessive surface
curvature or acceleration, or because there had been a direct impact with the wall.
The spatial coordinates are normalized with h = 1.25 m, which is the still water depth
at the wall. For H = 1.33m and H = 1.36 m, the computations are able to follow the
formation and motion of the jet up the wall. However, as H increases, the crest of
the wave becomes progressively more overturning. For H = 1.48m and H = 1.51 m,
the profiles indicate that a pocket of air is about to be trapped between the water
and the wall. The results for H = 1.42 m and H = 1.45 m represent border-line cases
where either a flip-through impact with a thin high-velocity jet will form or a tiny
air pocket will be trapped. This illustrates the way in which flip-through impacts lie
at the margin between reflective sloshing, in which a sheet of water runs up the wall,
and overturning impacts which trap air.

The almost symmetrical contraction of the free surface in a flip-through impact
implies that the flow is converging on a highly confined impact zone. High velocities
are needed to take the water away from this zone, which in turn means that a large
pressure gradient is required to accelerate the flow. Flip-through impacts are therefore
associated with strong accelerations and large pressures. Cooker & Peregrine (1991)
have reported accelerations as large as 10 000 g at the base of the jet. Figure 11 shows
the variation in pressure at the point on the wall where maximum pressure occurred
for offshore wave heights from 1.33 m to 1.54 m. The time variable t has its origin at
the start of computation when the offshore wave group is centred at x = −185 m; see
figure 3. Although the computations for only the two smallest wave heights are able
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Figure 11. Time series for pressure on the wall at the location of maximum pressure based
on incompressible potential-flow computations. Each curve is labelled with the value of H in
metres.

to proceed beyond the time of maximum pressure, all the curves are characterized by
a quick rise and suggest that impact pressures are highly dependent on the incident
wave height. For example, changing the offshore wave height by 3% from 1.36 m to
1.40 m leads to at least a doubling of the maximum pressure. The ratio may even be
larger due to the fact that the pressure was still increasing prior to computational
break down for the larger wave height. The highest pressure found was 50 ρgh.

The strong sensitivity of the impact pressures to offshore wave height is a special
feature of the type of impact described above. This is in marked contrast to waves
that are small enough to be well described by linear theory where reflection at a wall
produces wall pressures that are only proportional to the wave height.

Further details of the pressure variation for the flip-through case of H = 1.36 m
are given in figure 12(a), where both the pressure and the free-surface elevation on
the wall are plotted in the (t, y) plane. This specific computation is chosen because
it is for the largest wave height at which the maximum pressure is reached before
computational breakdown. As anticipated, large pressures occur at the base of the
jet. The time of maximum pressure is almost identical for all elevations on the wall. A
close-up of the region of maximum pressure is shown in figure 12(b) with a maximum
pressure of 21.6 ρgh. Given that figure 12(b) covers a time interval of only 15 ms,
which is 1/500th of the wave period, it is apparent that the extreme pressures are of
very short duration.

The incompressible calculations presented here indicate that, under the conditions
considered in this paper, as H increases the first violent impacts will be of the flip-
through type with little or no air entrapment. They also suggest that flip-through
impacts occur for a narrow band of wave conditions between sloshing and overturning
impacts.

Because the incompressible model is not able to cope with impacts of overturning
waves, further investigation into the characteristics of violent wave impacts has been
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Figure 12. (a) Contour plot of wall pressure as a function of time for H = 1.36 m. The
position of the free surface at the wall is shown by a thick curve. The isolines give the pressure
values in ρgh. (b) Close-up of (a) showing region of maximum pressure.

carried out using the compressible aerated-flow model that can handle such situations
together with the associated effects of entrained and entrapped air. The compressible
model also takes account of the air flow around the impacting wave and this might
affect the water motion even in cases where no air is trapped. As explained in § 3,
input data for the compressible model are provided by the incompressible model.
Consequently, the results presented below are continuations of the incompressible
results.

5.2. Flip-through impact (compressible computations)

The first compressible results considered are for H = 1.36 m. The incompressible
computations for this offshore wave height led to a classic flip-through impact and
were discussed in § 5.1. The new results for the variation in density and pressure
are presented in figure 13. Figure 13(a, b) shows the snapshots of the density and
pressure fields, while figure 13(c, d ) shows the temporal evolution of pressure on the
wall. A detailed description of figure 13(a–d ) is given in the caption. To facilitate a
direct comparison of results for different values of H , one fixed grey scale has been
adopted for all the pressure contour plots in figures 13, 15–18. Because the pressures
are relatively low, this causes the contour plots in figure 13 to be rather dark.

The snapshots in the first column show the wavefront as it approaches the wall. The
preceding trough is already moving upwards and reducing the apparent wave height.
The second column is for the time instant just before the largest pressure of 17.9 ρgh

occurs and shows the early stages of jet formation together with the associated
strong pressure at the base of the jet. The remaining two columns illustrate how the
jet develops. Throughout this time, high pressures propagate away from the impact
zone as a pressure wave with an almost semicircular front. When the pressure wave
reaches the top of the impermeable mound (lower boundary), it is reflected giving rise
to substantial bed pressures of up to 7 ρgh. The downward propagation of the impact
pressure is illustrated in the lower panel of the figure which shows the reflection
of the pressure wave together with its subsequent upward propagation in the (t, y)
plane.

Free surface profiles from the compressible and incompressible computations are
compared in figure 14. The density field of the compressible computation is shown in
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Figure 13. Density and pressure variation during the flip-through impact with H = 1.36 m.
(a) Snapshots of density field for t = 28.610, 28.614, 28.618, 28.626 s. (b) Pressure fields for
the same timings. (c) Pressure-time series for points A, . . . , D, as marked in the snapshots.
(d ) Pressure at wall in the (t, y)-plane with the pressure scale identical to that of the plots
in (b). Time instants of the snapshots are marked by solid vertical lines in (c, d ). The dotted
vertical lines in (d ) indicate the time interval for integration of impulse; see § 5.5.

the same fashion as in figure 13, while the surface profile of the incompressible-flow
computation is plotted on top as a black line. The two solutions are seen to be in
good agreement away from the wall. In the impact zone, the jet forms later in the
compressible solution than in the potential-flow solution. This is probably due to the
combined effect of the slower velocity at which pressures propagate, the presence of
air outside the water phase and numerical damping. Pressure-time series from the
compressible and incompressible computations are compared in § 5.5.
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5.3. Impact with a small air pocket (compressible computations)

Results for H = 1.45 m are shown in figures 15–16. Although the offshore wave
height is only 0.09 m greater than that of the previous example, the first two columns
of figure 15 clearly show that the 1.45 m wave overturns just before it reaches the wall
and traps a small pocket of air. This gives rise to pressures that reach 54.2 ρgh inside
the air pocket in the vicinity of point B, marked at the right edge of the frames. The
last two columns of the figure show the air pocket beginning to move up the wall,
while the flow of aerated water around the top of the pocket forms an upward jet.
As before, high pressures propagate away from the impact zone. The time series in
figure 15(c) show that the crest of the pressure wave has just passed point C by the
time of the fourth set of snapshots.

The further evolution of the pressure wave is presented in figure 16, where it
can be seen that the front of the wave retains its semicircular shape and develops
into a shock wave. The sudden increase in pressure associated with the passage
of this wave is apparent both in the pressure snapshots of the first and second
columns and in the (t, y)-plot in the lower panel. The lower edge of the shock wave
becomes progressively steeper as the wave propagates down towards the mound at an
estimated speed of 80 m s−1. Because reflection accentuates the pressure differential,
there is an even more dramatic jump in pressure when the wave is reflected. This is
well illustrated by the pressure record for point D at the toe of the wall and in the
lower panel. After reflection, the wave starts to propagate back up the wall while still
extending further seawards across the mound, as indicated by the last two columns
of snapshots in figure 16. Once this compression wave reaches the free surface, it
undergoes a negative reflection and a rarefaction wave returns back towards the
mound.

The pressure-time series for points A and B on the wall show that pressures in the
impact zone become sub-atmospheric (p −p0 < 0) around 8 ms after the impact. This
is caused by the expansion of the trapped air following its initial violent compression.
Over-expansion of the air pocket is followed by recompression, up to about 13 ρgh

by t = 28.49 s at point B, leading to an oscillatory variation in pressure that gradually
dies away. Both the sub-atmospheric pressure and the pulsation are visible in the
(t, y) pressure plot. The pulsation causes a secondary pressure wave to be radiated
away from the impact zone. The snapshot in the fourth column of figure 16, together
with the (t, y)-plot in the lower panel, clearly shows the propagation of this wave
down the wall. On the way down, it interacts with the reflected wave from the first
pressure peak that is coming up the wall. This indicates that for wave impacts with
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Figure 15. Density and pressure variation during an impact that traps a small air pocket.
H = 1.45m. See caption of figure 13 for explanation of figure layout. Timings of snapshots
are t = 28.464, 28.468, 28.472, 28.476 s.

trapped air pockets, at least two mechanisms can lead to the recurrence of high
pressures in the impact zone. One is the reflection by both the mound and the free
surface that leads to the propagation of pressure waves up and down the wall. The
other is the pulsation of the trapped air. Bullock et al. (2007) used their experimental
measurements of sub-atmospheric and oscillatory pressures in the impact zone, similar
to those described above, to help identify high-aeration wave impacts where air
entrapment was suspected. Physical records of this type have already been presented in
figure 2(c).
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Figure 16. Density and pressure variation during an impact that traps a small air pocket.
H = 1.45 m. See caption of figure 13 for explanation of figure layout. Timings of snapshots
are t = 28.480, 28.484, 28.488, 28.500 s.

5.4. Impact with a larger air pocket (compressible computations)

Results for H = 1.48 m are shown in figures 17 and 18. The trapped air pocket for this
impact is slightly larger than that for the 1.45 m wave due to the more pronounced
overturning of the breaker. The snapshots of the density field in figure 17 show how a
tongue of water from the wave crest hits the wall, traps the air and is deflected into a
vertical jet. Shortly afterwards, the air in the pocket reaches a maximum pressure of
29.4 ρgh. Once again, a pressure wave similar to those discussed previously propagates
away from the impact zone and reflects from the top of the mound. However, this
time the pressure wave is not strong enough to develop into a shock wave. Conversely,
the oscillatory pressures associated with the pulsation of the larger trapped air pocket
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Figure 17. Density and pressure variation during an impact that traps a larger air pocket.
H = 1.48 m. See caption of figure 13 for the explanation of figure layout. Timings of snapshots
are t = 28.414, 28.418, 28.422, 28.426 s.

are more pronounced than in the previous example, as can be seen in the lower panels
of figures 17–18 for points A and B.

5.5. Pressures, forces and impulse (compressible computations)

The compressible computations enable impact pressures and forces to be studied
for wave heights larger than the one associated with the limiting flip-through case.
Figure 19 shows the variation of wall pressure for impacts of waves with different
offshore heights. Each curve is for the point on the wall where the maximum pressure
occurred during that event. All the computations were carried out in the same way
as the examples described previously. The maximum pressures are listed in table 1.
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Figure 18. Density and pressure variation during an impact that traps a larger air pocket.
H = 1.48 m. See caption of figure 13 for the explanation of figure layout. Timings of snapshots
are t = 28.430, 28.438, 28.442, 28.450 s.

The data indicate that the maximum impact pressure increases with increasing
offshore wave height until it reaches 54.2 ρgh at H = 1.45 m for the wave that traps a
small air pocket, as shown in figures 15 and 16. Further increase in the offshore wave
height then causes the maximum impact pressure to decrease as progressively more
air is trapped. This is in line with the observations of Bagnold (1939) and Hattori
et al. (1994), who found that the largest impact pressures occurred with waves that
trapped a small amount of air. The impact pressures associated with the high-aeration
events also tend to have longer rise times and durations than the low-aeration events,
in accordance with the GWK data (Bullock et al. 2007).
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Figure 19. Pressure variation on the wall predicted by the compressible model (solid lines)
for the location experiencing the highest pressure. Each curve is labelled with the value of H
in metres. Results from the incompressible-flow computations are shown by dashed lines.

pmax − p0 Fmax Impulse
H (m) (ρgh) (ρgh2) (ρgh2(h/g)1/2)

1.33 12.0 8.53 1.04
1.36 17.9 10.0 1.12
1.39 29.6 12.7 1.29
1.42 48.7 17.2 1.29
1.45 54.2 21.2 1.32
1.48 29.4 18.4 1.30
1.51 23.5 18.8 1.52
1.54 18.5 18.3 1.71

Table 1. Maximum pressure, maximum force and impulse for various offshore wave heights
obtained from the compressible computations.

Pressure-time series from the incompressible-flow computations are also reproduced
in figure 19. Each curve is for the point on the wall at which the highest pressure
occurs in that particular computation. Note that the vertical position of this point not
only varies with H , it may also be different between compressible and incompressible
results obtained for the same value of H .

A direct comparison of the maximum pressures can be made for only the two
smallest wave heights. In both cases, the compressible model predicts lower maximum
pressures, with reductions of 10 % for H = 1.33 m and 17 % for H = 1.36 m.
This is attributed to the cushioning effect of the air flow prior to impact, the
compressibility of the aerated water phase caused by the initial uniform aeration of
5% and numerical grid effects. By the time they break down, the pressures of the
incompressible computation for H = 1.39 m already exceed the maximum reached by
the compressible computation. For H = 1.42m the break down occurs at a pressure
similar to the maximum pressure of the compressible computation.
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Figure 20. Force on the wall predicted by the compressible model (solid lines). Each curve
is labelled with the value of H in metres. Results from the incompressible-flow computations
are shown by dashed lines.

The instantaneous force on the wall from the compressible computations can be
obtained by vertical integration of the pressure field. The results are shown in figure 20
and the maximum values are summarized in table 1. Like the maximum pressure, the
maximum force increases with the offshore wave height up to H = 1.45 m. Here it
reaches a maximum of 21.2 ρgh2, which is 42 times the hydrostatic force associated
with still water, and significant pulsations occur after the main peak. However, unlike
the maximum pressures, the maximum force does not decrease rapidly when the wave
height is further increased. This is largely due to the fact that the high-pressure region
increases with the size of the air pocket and lends support to the observation of
Bullock et al. (2007) that, even when the pressures during a high-aeration impact are
lower, the fact that the impact is generally less spatially localized than a low-aeration
impact reduces the chance of the resultant force being lower.

Forces for the incompressible computations are shown in the figure by dashed lines.
For the two smallest wave heights, the maximum forces predicted by the compressible
computations are 7 % and 16 % lower than for their incompressible counterparts.
However, the compressible peak forces last for a longer duration. These differences
are in part caused by the fact that in the compressible computations, such as that
illustrated in figure 13, the maximum pressures do not occur simultaneously at all
elevations on the wall, whereas in the incompressible computations, such as that
illustrated in figure 12, they do. For impacts that trap an air pocket, yet another effect
adds to the duration of the force peak as illustrated in figures 15 and 17, where the
high-impact pressures are clearly associated with the compression of trapped air. In
this situation, the duration of the force contribution from the air is governed by the
dynamics of the air pocket, which for the computations presented has a longer time
scale than the pressures associated with low-aeration events. This helps to explain
why high-aeration impacts tend to have a longer duration than low-aeration impacts.

While the extreme pressures associated with violent impacts can be expected to
be responsible for local damage, such as the removal of blocks from a masonry
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breakwater (Müller et al. 2002; Wolters et al. 2004), the resultant force and its
impulse are likely to be more important as far as the overall stability of a structure
is concerned. For the purposes of this study, we define the following ad hoc measure
for the impulse for the compressible computations:

I =

∫ t2

t1

F (t) dt (5.1)

with t1 and t2 chosen on the basis of the following relationships:

t1 = tmax − 1.5(tbot − tmax ), (5.2)

t2 = tbot + 1.0(tbot − tmax ), (5.3)

where tmax is the time of maximum pressure and tbot is the time of maximum pressure
at the foot of the wall. Although the limits are somewhat arbitrary, they ensure that
most of the rise time to maximum pressure as well as the contribution from the
pressure wave going down and up the wall contributes to the impulse. The computed
values of t1 and t2 are marked with dotted lines in figures 13(d ) and 15(d )–18(d ).
Clearly, the impulse measure (5.1) is associated with the initial ‘impact pressure’ of
the impacts as defined in § 2. The values of the impulses calculated on this basis
for each of the offshore wave heights are listed in table 1. The results indicate that
the impulse increases monotonically with the wave height over the range covered.
Above H = 1.45 m, the increase in the impulse is mainly due to the tendency for the
duration of the force peak to increase with the size of the trapped air pocket as
indicated by figure 20. This is in agreement with Wood, Peregrine & Bruce (2000),
who showed that the presence of trapped air can act to increase the pressure impulse
for wave impacts, and Bullock et al. (2007), who concluded that the impulse due
to a high-aeration impact could well be higher than that due to a low-aeration
impact.

6. Summary and discussion
Attention has been drawn to the complex role of air in violent breaking-wave

impacts. Such impacts generally occur at times when previous events have already
caused a substantial volume of air to be entrained in the water and further air may
well be trapped between the wave and the structure against which it breaks. In order
to gain a greater understanding of the processes involved, a numerical study of aerated
violent wave impacts has been carried out by an incompressible potential-flow model
and a novel compressible-flow model that accommodates both entrained and trapped
air.

The compressible model is based on conservation equations for mass, momentum,
air mass and energy and is solved in a finite-volume framework, with no assumption
of smooth flow. An exact Riemann solver for the model equations has been developed
and the model has been successfully validated for a one-dimensional test case based
on a piston system. One-dimensional tests of shock wave propagation from air into
water have shown that the numerical smearing that inevitably occurs at such an
interface may lead to spurious oscillations at the front of the transmitted wave.
A sufficiently refined numerical mesh must be used to keep the oscillations under
control.

The models have been applied to waves of varying offshore height breaking against
a vertical wall in a two-dimensional situation similar to that investigated physically
in the GWK (Bullock et al. 2007). Results from the incompressible-flow model
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give insight into which type of impact is likely to occur and have been used to
provide initial data and boundary conditions for the new compressible-flow model
that accommodates both entrained and trapped air. Detailed computations have been
presented for aerated wave impacts of the flip-through type through to overturning.
The results show that the compressible model can successfully reproduce all of the
main characteristics of violent breaking-wave impacts observed in the GWK tests
(Bullock et al. 2007) and provide new insights into the physics of the processes
involved. Phenomena reproduced include:

• Strong sensitivity of maximum impact pressures to wave conditions.
• The association of the highest impact pressures with the entrapment of small

pockets of air, in accordance with the classic observations of Bagnold (1939) and
Hattori et al. (1994).

• Very high pressures in the impact zone (up to 54.2 ρgh in the present
computations) which may cause localized damage to the structure.

• Oscillatory pressures and forces associated with the alternate compression and
expansion of trapped air pockets. In the more extreme cases, pressures can become
sub-atmospheric, leading to the generation of potentially destabilizing seaward forces
on parts of the structure.

• Pressure waves that develop into shock waves in the more extreme circumstances.
• High pressures at the toe of the structure due to pressure waves propagating

down from the impact zone being reflected from the top of the mound. Such pressures
could potentially destabilize the bed material, the structure or both.

• The possible increase in the magnitude of impact forces and impulses by the
entrapment of air due to the increase in the spatial and temporal extent of the impact
zone even though the presence of air may reduce the magnitude of the maximum
pressure.

The results of the present paper have focused mainly on how the incident wave
height influences the impact type and pressure variation. The successful development
of a compressible model that reproduces the main features of physical wave impacts,
however, opens up many other possible areas for study. For example, the effect
of other levels of initial aeration could be investigated in addition to the uniform
5 % level considered here. This could include more realistic scenarios in which the
initial aeration was non-uniform and designed to represent the cloud of bubbles close
to the wall entrained by a previous impact. A range of practical problems could
also be investigated. Possibilities include the way in which the wave-induced forces
could be reduced by making changes to the structural geometry, the response of
structures to dynamic loading and the displacement of bed material by the pressure
waves that propagate offshore. The compressible model is also particularly well
suited to the study of scale effects in small-scale hydraulic model investigations.
Indeed, a start on this has already been made (Bredmose & Bullock 2008). It should
also be noted that the application of the compressible-flow model is not limited
to wave impacts on coastal structures. It may just as well be applied to impacts
on offshore structures, ships or to the study of sloshing inside LNG tanks within
ships.

Although the results presented here successfully reproduce the main characteristics
of the experimental observations, they are naturally limited by their inherent
assumption of a two-dimensional flow. Among the relevant three-dimensional effects
that are thereby precluded in the modelling is the crossflow non-uniformity of the
impacting wavefront that is likely to affect the dynamics of the air pocket. In this
situation, air leakage may therefore take place in the sideways direction as well as
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through the gap between the wavefront and the wall. This non-uniformity in the
air flow is likely to affect the propagation of pressure sound waves, while the three-
dimensional turbulence field along the wavefront may also affect the loads on the wall.
The propagation of sound waves from an oscillating air pocket and its subsequent
collapse is discussed by Colicchio et al. (2007). An extension of the present analysis
and computation to three dimensions would be relatively straightforward, although
the demands on CPU and computational memory would increase to a great extent.
Such computations are a natural next step from the present study, as it could lead
to an even more realistic representation of the behaviour of trapped air by taking
crossflow non-uniformity and the associated effect on pressure wave propagation into
account. This could introduce the three-dimensional variability of impact pressures
seen in supposedly two-dimensional laboratory tests and further would increase the
potential application of the model to three-dimensional flows where the role of
compressibility is important.
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Appendix A. Energy conservation for isentropic flow
When no shock waves are present, the flow is isentropic and the energy conservation

equation (3.8e) can be replaced by the direct use of the pressure relation (3.3). In
this case, energy conservation follows directly from conservation of mass, momentum
and gas mass in combination with (3.3). Here, we show that for smooth flows, these
two formulations are equivalent. The implication of this is that while the energy
conservation equation ensures a correct modelling of shock waves, it does not alter
the smooth solutions of the system for isentropic flow.

The task is thus to show that (3.8e) with the energy density defined by (3.7) is
identically satisfied for smooth flows that satisfy (3.8a)–(3.8d), (3.2) and (3.3).

We first write the energy conservation equation as

E = Et + [(E + p)u]x + [(E + p)v]y + ρgv = 0. (A 1)

For the first term, we find

Et =
(βp)t
γ − 1

+
1

2

(
(ρu)2

ρ

)
t

+
1

2

(
(ρv)2

ρ

)
t

=
(βp)t
γ − 1

+ u(ρu)t − 1

2
u2ρt + v(ρv)t − 1

2
v2ρt .
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The time derivatives of ρ, (ρu) and (ρv) are substituted from the mass and momentum
equations (3.8a)–(3.8c). After algebraic reduction, we obtain

Et =
(βp)t
γ − 1

− u

(
1

2
ρu2 + p

)
x

− v

(
1

2
ρv2 + p

)
y

− ρvg

− 1
2
ρu2ux − 1

2
ρyu

2v − ρuvuy − 1
2
ρu2vy

− 1
2
ρxuv2 − 1

2
ρv2ux − ρuvvx − 1

2
ρv2vy. (A 2)

The next terms in (A 1) are obtained by direct differentiation, leading to

[(E + p)u]x =
1

γ − 1
βupx +

1

γ − 1
(βu)xp + pux

+ u
(

1
2
ρu2 + p

)
x
+ 1

2
ρu2ux + 1

2
ρxuv2 + 1

2
ρuxv

2 + ρuvvx, (A 3)

[(E + p)v]y =
1

γ − 1
βvpy +

1

γ − 1
(βv)yp + pvy

+ v
(

1
2
ρv2 + p

)
y
+ 1

2
ρv2vy + 1

2
ρyu

2v + 1
2
ρu2vy + ρuvuy. (A 4)

The insertion of (A 2)–(A 4) into (A 1) gives after algebraic reduction

E =
βtp

γ − 1
+

βpt

γ − 1
+

1

γ − 1
(βu)xp + pux +

1

γ − 1
pxuβ

+
1

γ − 1
(βv)yp + pvy +

1

γ − 1
pyvβ. (A 5)

The differentiation of the pressure relation (3.3) gives

pξ = p0γ

(
σ

σ0

)γ −1
σξ

σ0

= γ
p

σ
σξ , (A 6)

where ξ can be x, y or t . Insertion into (A 5) yields after subtraction of γp/ ((γ − 1)σ )
times (3.8d)

E = p[−βt + (1 − β)ux − uβx + (1 − β)vy − vβy]. (A 7)

The last step is to introduce the constitutive relation (3.2) into the mass equation (3.8a).
We obtain

(βσ )t − Mβt + (βσu)x + [(1 − β)Mu]x + (βσv)y + [(1 − β)Mv]y = 0. (A 8)

Upon subtraction of (3.8d) from this result and division by M we get

−βt + (1 − β)ux − uβx + (1 − β)vy − vβy = 0, (A 9)

which is identical to the bracket on the right-hand side of (A 7), and thus E = 0.

Appendix B. Grid convergence
The compressible aerated-flow computations of this paper have been carried out

on a uniform numerical grid of 500 × 1000 cells (2.5 mm × 2.5 mm). An impression of
the grid can be seen in figure 21. Grid convergence has been assessed by comparing
the pressure-time histories on the wall at y = 0.65m (point B in figures 13, 15–
18) for this grid and for a coarser grid of 250 × 500 cells. Point B is close to the
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Figure 21. Close-up of density field (H = 1.45 m, t = 28.468 s) overlayed with the numerical
grid of 500 × 1000 cells. The full spatial extent of the density field can be seen in the second
column of figure 15.

ppeak − p0 ppeak − p0

250 × 500 500 × 1000
H (m) (ρgh) (ρgh)

1.33 11.4 12.0
1.45 37.0 53.8
1.54 16.7 17.8

Table 2. Peak pressures in y = 0.65 m computed at different grids.

point of maximum pressure for all of the impacts covered by these figures. The
resultant pressure-time series for wave heights of 1.33 m, 1.45 m and 1.54 m are shown
in figure 22 while the peak pressures are listed in table 2. For H = 1.33 m and
H = 1.54m, the application of the coarse grids leads to a reduction in peak pressure
of 4.9 % and 6.1 %, respectively. For H = 1.45 m the reduction is 31 % and clearly
indicates that for this wave height, full convergence for the peak pressure has not
been achieved. An additional computation, shown as a dotted line in figure 22(b),
using an intermediate grid of 400 × 800 cells confirms this finding as a peak pressure
of 47.6 ρgh was achieved. This is 12 % smaller than peak pressure obtained with the
500 × 1000 cell grid.

The real maximum pressures during impact are thus likely to be even higher than
computed here for the most violent impacts. The associated need for high numerical
resolution can be linked to the flow behaviour at the time where the maximum
pressure occurs; see columns 2 and 3 of figure 15. The largest pressure in point B
occurs when a small upward jet is formed at the bottom edge of the trapped air
pocket. This jet is small in size and is formed from air–water mixture with intermediate
density. Coarsening the grid leads to poorer resolution of the jet and is also likely to
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Figure 22. Time series for pressure in y = 0.65 m computed at different grids. (a) is for
H = 1.33 m, (b) for H = 1.45 m and (c) for H = 1.54 m.

increase the thickness of the air–water interface at the bottom of the pocket. This in
turn affects the pressures due to the dependence of sound speed to aeration level.

The above results indicate that the converged peak pressures for the most violent
impacts are even higher than those obtained in this study on the 500 × 1000 cell grid.
An analysis of the results from the coarse grid computations, however, leads to the
same qualitative variation with respect to wave height for maximum pressure and
force, while the results for impulse are nearly identical between the two grids.
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One computation with 500 × 1000 cell resolution typically took approximately 3
days on a 2.6 GHz AMD Opteron CPU and a doubling of the resolution implies that
the CPU time would increase by a factor of eight. This is due to the associated increase
in the number of computational cells by a factor of four combined with the doubling
of the number of time steps. Computations using a 1000 × 2000 cell grid were therefore
considered impractical. Ongoing work in this regard is the introduction of adaptive
grid refinement that allows a local and dynamic improvement of grid resolution and
development of an approximate Riemann solver that avoids the iterative solution of
a nonlinear scalar equation for each Riemann problem.
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